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Thermal and electrical resistivities of aluminium below 4.2 K 
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Department of Physics, University of R e @ ,  Regina Saskatchewan. Canada S4S OM 

Received 8 December 1992, in final form 20 July 1993 

Abstract High-accuracy thermal conductivity measurements were carried out on two samples 
of pure aluminium below 4.2 K. Along with elecVical resistivity measurements on one of 
the samples and high-accuracy elecvical resistivity meaurements available in the literature. 
these results permitted a determination of the electrowelectron scattering terms in the thermal 
and electrical resislivities. The coefficients of these tenns are in very good agreement with 
lhe values predicted by MacDonald. In addition. the elecvon-phonon component prp of the 
electrical resistivity was successfully separated from the component pd due to deviations from 
Mstthiessen’s mle. 

1. Introduction 

After more than a century of experiment and analysis, a detailed understanding of the 
transport properties of metals is beginning to emerge. Bass ef al [I] have provided a 
fascinating review of our present knowledge of the electrical resistivity of the alkali metals, 
in which most of the various electron-scattering processes are accounted for. 

These advances have been due to the development of high-accuracy measuring 
instruments and subtle theoretical analysis. For metals with non-spherical Fermi surfaces, 
the problems are more complicated and our knowledge is correspondingly limited. 
However, aluminium has a cubic structure, which allows some simplification of theoretical 
calculations, and despite the complexity of its Fermi surface is considered a ‘simple 
metal’. Also, it is available in high purity, can be annealed in air and is easily handled. 
Consequently, considerable work has been carried out on this metal. 

Garland and Bowers [2] found that in aluminium p varied approximately as T Z  below 
4.2 K and tentatively attributed this term to electron-electron scattering pee = aT2 where 
a Y 5 x !J m K-’. Subsequent theoretical calculations by Lawrence and Wilkins [3] 
determined amlC = 0.12 x 52 m K-2. Furthermore, the calculations by Lawrence and 
Wilkins [4] provided an expression for the electron-phonon component, pep = bePT’ where 
bep = 2.0 x 51 m K-5 (as obtained by Ribot ef aI [5] by extrapolating the curves 
published by Lawrence and Wilkins (figure 1 of reference [4]) to lower temperatures). 

An excellent review of the historical background of electron-electron scattering in 
the electrical resistivity of aluminium is provided in the paper by Ribot ef al [51 and 
comprehensive authoritative presentations are offered in the review papers by Kaveh and 
Wiser [6] and by van Wucht et a1 [7]. This period is capped by the theoretical advances 
of MacDonald and Geldart [8,9], which extend the work of Lawrence and Wilkins to 
incorporate a phonon-mediated contribution to the scattering amplitudes to provide values 
of u,l, = 4.1 x 52 m K-2 and A,’, = 7.1 x m W-I where W, = A,,l,T 
is the component of the thermal resistivity due to electron-electron scattering, and by the 
superlative experimental data of p (for T < 4.2 K) provided by Ribot et af [51. 
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2. Experimental method 

A computer-controlled, high-accuracy. low-temperature thermal conductivity apparatus, 
previously described [IO],  was used to measure the thermal conductivity K of two samples 
of aluminium whose characteristics are given in table 1. These samples were obtained from 
Johnson Matthey Ltd, who provided the following impurity analysis: for AI-I, the purity 
is 99.999% with 5 ppm Mg and 4 ppm Si; for AI-2, the purity is 99.999% with 6 ppm Mg 
and 4 ppm Cu. 

Y Z Hou and J F Kos 

Table I. Charactclistics of samples. 

Lorenz 
Diameter kngul  Residual resistivity w number La 

Sample (k” (mm) (lo-” 52 m) (IO-’ W hl K-2) 

AI-l 503.4 * 0.5 159.86*0.02 9.731 A 0,007 2.452 * 0.009 
AI-2 1522.8 * 0.05 1850.41 10.05 6.31 f 0.03 2.44 0.02 

Sample AI-l was mounted as obtained from the spool but AI-2 was wound in a spiral 
on a quartz tube 1.27 cm in diameter and annealed in an oven (in air) for I O  h at 450°C. 
then slowly cooled. It was subsequently gently slipped onto a 1.27 cm diameter teflon tube 
with walls 0.5 mm thick. The windings were spaced with multifilament nylon fishing line 
before mounting this sample in our apparatus. 

Hair-thin slivers of aluminium were cut from the sample, under a microscope, with one 
end of each sliver still attached to the sample to provide thermal and electrical potential 
leads (about 2 cm from each end of the sample). The other ends of the slivers were 
soldered to 0.25 mm diameter high-purity aluminium wires (as shown in figure 1 of reference 
[lo]). These wires provided thermal contacts to the thermometers and electrical contacts 
to leads from the digital nanovoltmeter. The tiny contacts to the samples allowed accurate 
measurements of the effective lengths of the samples with a travelling microscope. 

The effective length of AI-1 was measured to about two parts in 104 and that of AI-2 
was measured to about three parts in 105. The average cross-sectional areas, and hence 
the average diameters of the samples, were determined by measuring their actual lengths 
and weighing them to within about one part in IO3 for AI-l  and one part in 104 for A 1 2  
The specific gravity of AI = 2.6989 at 20°C [I61 was used to calculate the cross-sectional 
areas. The mom-temperature size factors of the samples were therefore determined to about 
two parts in IO4 for AI-2 and one pari in IO’ for AI-I. These values represent numerical 
averages; the actual sample diameters probably vary along the lengths of the samples by 
considerably more than one part in IO’. 

The accuracy of the thermal conductivity data depends on the size of the temperature 
gradient AT selected, on the temperature stability attained and on the accuracy of 
intercalibration of the two thermometers in contact with the potential leads of the sample. 
Over most of the temperature range a temperature gradient AT = 0.345 K was used; 
however at the lowest temperatures only a small gradient could be obtained (about 0.1 K 
at 2.5 K). 

Although the absolute temperature scale is reliable to somewhat less than I mK in 
the range of interest, temperatures were read to 0.01 mK, and with proper intercalibration 
corrections reliable temperature differences could be measured to about 0.1 mK. 

During the same run in which the K values were obtained and without raising the 
temperature above 20 K, an intercalibration of thermometers was carried out (with the 
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sample heater off). These intercalibrations were used to provide corrected values of the 
thermal conductivity K,.  The upper limit to the relative accuracy of the corrected values 
of the thermal conductivity K,  was about two parts in lo4 with AT Y 0.5 K. The lower 
limit was about one patt in IO3 for AT Y 0.1 K .  The absolute accuracy was limited by the 
average size factor to be about one part in IO3 for AI-I. 

3. Results and analysis 

The corrected values of the thermal conductivity K, from 2.5 K to 4.2 K for samples AI-l 
and AI-2 and the measured values of the electrical resistivity p from 2.9 K to 5.9 K for 
sample AI-l are listed in tables 2 and 3 respectively. During measurements on AI-2 only a 
few low-temperature points (p.  T )  were taken (sufficient only to provide a value of po by 
extrapolation to T = 0). 

Table 2. Correcled values of the thermal conductivity of AI-l and AI-2 as a funclion of 
temperalure. 

AI-1 ai-2 

T (K) K, (104 W m-I K-') 7' (K) K, (IO4 W m-I K-') 

2547 0.6285 2.462 0.9319 
2558 0.6313 2.610 0.9839 
2.601 0.6411 2.708 1.0151 
2.634 0.6491 2.710 1.0154 
2.708 0.6629 2.717 1.0177 
2.765 0.6766 2.785 1.0414 
2.806 0.6887 2.874 1.0799 
2.860 0.7027 2.907 1.0909 
2.972 0.7299 2.992 1.1200 
3.132 0.7658 3.018 1.1287 
3.248 0.7907 3.056 1.1411 
3.348 0.8114 3.063 1.1439 
3.516 0.8455 3.192 1.1841 
3.699 0.8808 3.294 1.2162 
3.925 0.9229 3.410 1.2507 
4.095 0.9544 3.587 1.3000 
4.105 0.9553 3.700 1.3299 

3.865 1.3729 
4.044 1.4161 
4.202 1.4608 

The low-temperature thermal resistivity W = l / K c  and electrical resistivity p of 
aluminium may be written as 

w = WO + Wq+ w,+ w,+ W"+ w, (1) 

and 



7800 Y Z Hou and J F Kos 

Table 3. Raw data of the electrical resistivity of AI-I as a function of LemperaNre. 

T (K) p S l  m) T (K) p (IO-” a m) 
2907 9.111 4.678 9.865 
2967 9.781 4.793 9.873 
3.1 18 9.712 4.908 9.889 
3.197 9.793 4.950 9.891 
3.472 9.791 5.188 9.922 
3.602 9.802 5.363 9.928 
3.713 9.801 5.576 9.956 
3.848 9.812 5.577 9.954 
4541 9.867 5.716 9.984 
4.549 9.851 5.888 10.00 
4.553 9.859 

where 

W, is the component of the thermal resistivity due to inelastic electron-phonon scattering 
(vertical processes on the Fermi surface), W, is the component of the thermal resistivity 
due to the scattering of electrons by magnetic impurities, p~ is the temperature-independent 
residual resistivity due to impurities and physical imperfections, pep is the resistivity due 
to electron-phonon scanering, pd represents deviation f” Matthiessen’s rule (DMR), pK 
is due to electron-electron scattering, pm is the Kondo component due to the scattering of 
electrons by magnetic impurities, LO = 2.443 x W R K-’ is the Sommerfeld value 
of the Lorenz number and L,  is the number which corresponds to Lo for electron-electron 
scattering. 

3.1. Methods of analysis 

In the past an analysis of electrical resistivity data required an extrapoltation of p to T = 0 
to obtain PO. In this method one assumed, with guidance from theoretical models, that the 
resistivity could be expressed by an equation o f  given form, for example by an equation 

p = po f aT2 f bT5. 

This equation was put in the form 

( p  - PO) f T 2  = a f bT3 

and ( p  - po) /Tz  was plotted as a function of T 3  to obtain a 
Y intercevt a which determined the values of the constants a and b. 

ear graph with slope and 

More recently the method outlined by Ribot el a1 IS] has been used. This also requires 
that one assumes the form of an equation such as equation (6). One then takes the derivative 
of this equation with respect to T and divides by T to obtain 

( I / T ) d p / d T  =2a+5bT3.  
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If dp/dT is replaced by the experimentally determined values A p f A T ,  then plots of 
( I / T )  A p / A T  as a function of T’ produce a linear graph in which 5b is the slope and 
2a is the y intercept. and hence a and b are determined. This method has the advantage 
that the value of po is not required and therefore errors due to imperfect extrapolations of 
p to pa at T = 0 do not affect the values of a and b. 

In this work we employ multiple linear regression analysis (MLRA) to fit experimental 
data to an assumed equation such as equation (6). In this case one may think of po as an 
adjustable parameter, which merely raises or lowers the curve (represented by a T Z  + b T 5 )  
parallel to the y axis without affecting either the shape of the curve or the values of a 
and b obtained by carrying out the curve fit to the data points. It therefore has the same 
advantage as the previous method as well as several other advantages. It can be applied to 
equations which cannot be linearized. The values of all parameters, including po, and their 
error estimates are easily obtained. If high-accuracy data are available the accuracy of the 
parameters is not limited by how well the slope and intercept can be read on graph paper. 
If the exact form of the uial equation is not known, for example, if it is not known that the 
third term in equation (6) varies as T s ,  then an equation of the form 

p =pa  + a T Z  + bT” 

may be fitted to determine n. However, in this case it is necessary to determine four 
parameters and unless adequate data are available a fit may not be obtained or it may be 
obtained with large estimated standard deviations in the parameters po. Q, b and n. 

In MLRA an estimate of the required parameters is input into the computer and the 
program varies these parameters to converge on values which give the best fit. If the 
combination of accuracy, number of available data points and ranges of the independent 
and dependent variables is inadequate for the number of parameters that must be determined, 
convergence does not occur and the values of the required parameters cannot be obtained 

We also use least-mean-squares fits (LMSF) to a polynomial such as 

y = a + bx + cxz + . . . + nxm. 

Fits to equations of the type 

y = a + b lnT  

or 

y = a  + bT2 

can be obtained by setting x = In T or x = T z  and fitting 

y = a + b x  

to the data ( y ,  In T )  or (y, T 2 ) .  A fit is always obtained regardless of the quality of data. 
For poor data the errors in the coefficients may be considerably larger than the coefficients 
themselves, therefore the estimated errors in the coefficients must always be calculated to 
determine whether the fit provides meaningful values of the coefficients. It is customary to 
omit points that are more than two standard deviations from the curve; however, the number 
of points removed must be small relative to the total number available for a fit in a given 
range. 
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Table 4. Coefficients obtained by MLRA 10 equation (6) for 7 > 2.85 K. Average value (U)  of 
o for R data, (a) = (4.14 + O M )  x IO-’5 R m K”. 

Sample h, (IO-” R m) o R m K-*) b (IO-” R m K-5) 
Al.1 9 .73 l4 i  0.0070 4.61 iO.61 1.58 f 0.24 
RAI-I 
RAI-2 
RAI-3 
RA14 
RAM 
RAM 
RAI-7 
RAI-8 

0.921 1 i 0.0004 
0.659 * 0.002 
1.2919 * 0.0004 
2.9103 i 0.0004 

106.792 f 0.001 
110.627 i0 .002  

6.6195 * 0.0006 
5.99s i 0.002 

4.24 i 0.05 
4.5 f 0.2 
4.74i0.05 
4.77 i 0.05 
3.6 * 0.2 
4.2 i 0.2 
3.65 i 0 . 0 9  
3.9 f 0.2 

1.42 A 0.04 
1.1  f 0 . 2  
1.67 i 0.04 
2.33 + 0.04 
4.6 + 0.1 
4.2 & 0.2 
2.72 i 0.08 
2.4 f 0.2 

RAI-9 22.4413 i 0.0002 3.75 i 0.03 241 * 0.03 

3.2. Analysis of electrical resistivity data 

The data used are listed in table 3 and also in the appendix of [SI, which provides a large 
amount of very high-quality data, which we will refer to as R data. To present the most 
logical account of our results we begin with the analysis of the resistivity data referred to 
above. In practice, we actually began with the analysis of only our own data along the lines 
described in section 3.3 below and arrived at a graph similar to that of figure 5. At that 
stage, it was suspected that points below 2.85 K included an additional electron-scattering 
term, which decayed rapidly with increasing temperature and whose effect above 2.85 K 
was negligible. If this were the case, it was surmised that the effects of the same scattering 
process should also appear in the electrical resistivity. A search of the literature revealed 
the R data presented in figure IO of [5]. which indicated that between 2.85 K and 4.2 K 
the points for a given sample fall on a straight line and that a definite kink occurs at about 
2.85 K. 

Fits of the R data between 2.85 K and 4.2 K to equation (6) were carried out using 
MLRA to determine PO. a and b for each of the nine samples. A similar fit was carried out 
for data obtained for sample AI-1 from 2.9 K to 5.9 K. These fits were excellent. Most 
points fined the curve to better than one part in lo3. The values of the parameters po, a and 
b and their estimated standard deviations are listed in table 4. It is noted that the values 
of a for the R data are approximately equal, though not within their calculated error limits, 
and that the average value (a) = (4.14 f 0.44) x ’2 m K-2 is, within error limits, 
equal to a = (4.6 50 .6)  x C2 m K-* for sample AI-1. A visual presentation of these 
results is provided in figure 1, where equation (6) is written in the form 

( p  - po) /T2  = a  + bT3 

and (p  - po) /T2  is plotted as a function of T 3  for samples RAI-I-RAM (the value of po 
used is that obtained by MLRA). In the absence of an additional scattering process below 
2.85 K equation (6) could be extrapolated to T = 0 (broken lines). The additional effect 
therefore manifests itself in the rise of data points above the broken lines. Similar results 
were obtained for the remaining samples with the exception of RAIL5 and RAI-9, where 
the extraneous effects were about five times smaller in RAI-5 and two times smaller in 
RAI-9. Clearly, an additional term pm must be added to equation (6) and its magnitude as 
a function of temperature can be determined from 

p,,, = p - (po + aTZ + bT5) .  
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l ~ ~ ~ ~ l ' ' ' ' l ' ~ ' ~ l ' ' ~  , , I 8 8 1  / I '  

. RAL-1 . RAL-2 . R4L-3 
* R4L-0 

L 

[Temperature (K)]' 
Figure 1. Graphs of ( p  - &IT2 versus T 3  as a visual representation of the fits obtained to 
equalion (6) using MLRA to data between 2.85 K and 4.2 K. 

It is known that magnetic impurity scattering produces a component 

pm = c(l + dln T )  fOr T > TK 

and 

pm = e[ 1 - (T/6) ' ]  for T c TK 

where TK is the Kondo temperature. To determine whether pm could be attributed to 
magnetic impurity scattering the (pm. T )  data were fitted to the equation 

pm = 01 + ,5 InT (1.6 K c T -= 2.9 K) (7) 

for all nine samples, RAI-1441-9. When points below 1.6 K were omitted good fits were 
obtained, as shown in figure 2 for samples RAI-I to RA14 The values and estimated 
standard deviations of the coefficients of equation (7) for all nine samples and the points 
used (starting with point No 1 at the lowest temperatures-as listed in reference [5]) are 
given in table 5 .  It is noted that for all samples (Y 'v 8 ,  though not within the estimated 
standard deviations of 01 and ,5. 

For samples RAI-I to RAI-4 and RAI-7 points below 1.6 K provided a g o d  LMSF to 
an equation of the form 

p m = y - 6 T  * (T c 1.6 K). (8) 

In the remaining four samples the number of points below 1.6 K was insufficient to provide 
meaningful fits. Values of the coefficients of equation (8). their estimated standard deviations 
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Temperature (K) 

h 

E 
C 

E 
4 

Ln[Temperalurc ( io]  

Figure I Graphs of pm versus in7 for 1.6 K < T < 2.85 K. 

Table 5. Coefficiens obrained by MLM IO equation (7). 

Sample (K) Used (io-” D m) in SI uNts 

RAI-I 1.70-2.65 Nos 11-31, 33 6.93 50.01 6.78 k 0.01 
RAI-2 1.70-273 Nos 8-13, 15-17 8.40 0.04 7.88 $. 0.05 
RAI-3 1.65-273 Nos 10-20. 72-24 8.74 * 0.06 8.41 f 0 . 0 8  
RA14 1.54473 Nos 6-15. 17 9.21 f 0.05 8.74 f 0.07 
RAI-5 1.52-2.16 Nos 1 4  2.37 5 0.04 2.34 & 0.06 
RA14 1.77-2.61 Nos 3-6 8.8 5 0.2 8.8 f 0.3 
RAI-7 1.60-2.63 Nos 4-9 4.39 50.01 4.46 * 0.02 
RAI-8 1.66-2.61 Nos 2-5 5.55 & 0.02 5.54 * 0.03 
RAI-9 1.76-2.62 Nos 3-6 2.96 5 0.03 3.04 f 0.03 

Temperarunrange b i n s  a B (lo-”) 

and the values of e = (y/S)’’’ are listed in table 6 and graphs for samples RAI-1 to RA14 
are illustrated in figure 3. 

The above analysis provides convincing evidence for the existence of magnetic impurity 
scattering (with a Kondo temperature TK x 1.6 K) in the R data. Unfortunately, an impurity 
analysis for these samples is not available and the magnetic impurity causing the scattering 
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Table 6. Coefficients obtained by MLRA to equation (8). Average value (8) of 8 for R dam, 
( B )  = (2.361 i 0.026) K. 

Sample y Q m) S Q m K-2) 0 = (y /&) ’P  (K) 
RAI-I 6.865 0.02 1.234 5 0.008 2.358 5 0.008 
MI-2 8.51 i 0.04 1.53 i 0.02 2.36 5 0.01 
RAI-3 8.61 5 0.02 1.51 *0.01 2.388 i 0.005 
RAI-4 9.36* 0.03 1.65 i 0.01 2.381 iO.005 
RAI-7 4.391 i 0.002 0.819 * 0.008 2.32 0.01 

t ’  
Temperature (K) 

1.2 1.4 1.6 
7 , .  1 I I I 1 . U - 1  

i U L - 2  . UL-3 
* U L - 4  

E 
9 

1.5 2 2.5 3 

[Temperahie (K)]‘ 

Figure 3. Graphs of pm versus T2 for T c 1.6 K. 

cannot be identified. It is surprising that the samples vary by more than two orders of 
magnitude in po, but p,,, is approximately equal for all samples except RAI-5 and RAI-9. 
Since the latter is unannealed and impurities in AI tend to aggregate along dislocations and 
grain boundaries, the effect of magnetic impurities is expected to be relatively reduced in 
this sample. 

If it is accepted that the R data contain a term due to an extraneous scattering process then 
the data below 2.85 K must be omitted to properly determine the other terms in equation (2). 
In this case the aT2 term of equation (6) may be identified with electron-electron scattering. 
The fact that it has nearly the same magnitude for all samples supports this contention. 
Moreover, the values of the coefficients a ( (a )  = (4.14 i 0.44) x IO-” CZ m K-’ for 
the R data and a = (4.6 ZL 0.6) x CZ m K-’ for AI-I) agree well with the value 
acalc = 4.1 x IO-” f2 m K-2 determined by MacDonald 191. On the other hand the 
magnitude of the bT5 term varies with po and therefore cannot be identified with electron- 
phonon scattering (&,). 
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In figure 4, b is plotted as a function of log po. A linear relationship is obtained for 
all annealed samples (AI-1 and RAI-9 are unannealed). The plus sign for A I 2  does not 
represent a data point, rather it indicates the value of b expected for our annealed sample 
AI-2 on the basis of the value of po determined for AI-2. An LMSF of the (b, PO) data to 
the equation 

h = f + d o g  00) (9) 

yields values f = ( I  .99 f 0.06) x s2 m K-5 and g = ( I  .53 zk 0.05) x lo-'* SI units. 
Therefore, the hT5 term can be resolved into two components, f T5 and g(logpo)T5. Since 
the former is independent of po we attribute it to electron-phonon scattering (pep) and we 
attribute the latter to DMR (pd). The later form is consistent with the theoretical work of 
B e r g "  et a/ [ 1 I ]  and Kaveh and Wiser [ 121. 

,p, (10.'~ R m) 

Figure 4. Graph of h versus logm for mealed samples (AI-1 and RAI-9 are unannealed). 

3.3. Analysis of thermal resisriviry data 

If the last five terms in equation ( I )  are relatively small compared to WO, then at sufficiently 
low temperatures an approximate value LE (experimentaly determined value of LO) may be 
found from a linear fit of the thermal conductivity data Kc as a function of T where the line 
is forced to pass through the origin (K, = 0, T = 0). In our case the required condition is 
not fulfilled, therefore an altemative method for determining LO is employed. 

Equation ( I )  (with W,,, = 0) is written as 

(w - wcp - Wd)T = PO/Lt + (wee f u'v)T (10) 

where (Wep + wd) = (pR + pd) /LhT,  (pep + pd) = bT5 ,  and the vaiue of Lb is assumed 
to be equal to the Sommerfeld value Lo. If this assumption is not well satisfied, the error 
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introduced will not be large because W, + W, is small compared to W (less than 0.3% 
at 3 K and less than 0.5% at 4 K). The value h for AI-I was found from our resistivity 
data as listed in table 4 and for AI-2 it was determined to be 2.4 x IO-” m K-5 from 
equation (9) as shown in figure 4. Equation (IO) can be written in the form 

z = C + A T ~  + B T ~  

where Z = (W - Wep- Wd)T, C = po/L$, A = W,/TJ-’  and B = W v / T K - ’ ,  then using 
MLRA a fit of data from 2.85 K to 4.0 K was attempted to provide values of C, A ,  6. J 
and K. Unfortunately, the data are not sufficiently good for convergence to occur. Even 
when J is set equal to two (it is assumed that W, = AT) the data are still inadequate to 
determine the remaining four parameters. 

A fit of data between 2.85 K and 4 K was carried out to the equation 

z = c i- D T ~  (11) 

where Z = (W - Wep - Wd)T, C = &/LE and D T M  = (Wee + W,)T. The parameters 
C, D and M and their estimated standard deviations are listed in table 7, as are the 
calculated values of LE. It is encouraging that these values are, within the mor limits, 
equaI to the Sommerfeld value of LO; consequently, in subsequent calculations we will use 
L$ = Lb = LO = 2.443 x lo-* W Q K-2. Since LO = 7r2k2/3e2 is a fundamental constant 
all good data, properly analysed, should yield this value for all metals in the limit T -+ 0. 
Graphs of Z as a function of T M  for AI-1 and AI-2 are presented in figure 5. They also 
include data points below 2.85 K which indicate the existence of an extraneous scattering 
process. It is unlikely that this anomaly is due to thermometry errors or a fault of the 
apparatus because recent measurements on free hanging samples of potassium using the 
same apparatus do not show any anomalies between 2 K and 3 K. Since the effect decays 
as the temperature is increased, becoming negligible at 2.85 K, it is reasonable to attribute 
it to magnetic impurity scattering of the same type as observed in the R data. 

Table 7. Parameters C, D and M from an MLRA fit of data to equation (1 I ) ,  calculated value 
of Lt and parameters A, E and N from an MLRA fit of data Io equation (12). 

Parameter AI-l AIL2 

C m Kz W-I) 3.969 1 0.01 t 2.585 1 0.008 
D (IO” S I  uniu) 1.74 h 0.61 1.42 f 0.43 
M 3.71 h0 .23  3.73kO.u) 

L$ (IO-’ W IL K-’) 2.44 5 0.03 

A (IO-’ m W-I) 3.612.3 6.85 f 0.62 
E (IO-’ SI units) 2 4 i B  2.25 1 2.05 
N 2.99 5 0.75 4.41 zk 0.64 

2.45 k 0.01 

Equation ( 1 )  may now be written as: 

(W - Wep - Wd - Wo)/T = WeJT + W v / T  

which has the form 

Y = A + E T N  
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Figure 5. Graphs of ( W  - WV - Wd)T Venus T3.11'- for AI-l and versus T'"''.,. for AI-2 
(lhe intercepts determine C = m/Lf) .  

where Y = (W - W, - W,j - Wo)/T ,  A = W,/T and E = WV/TN+'.  A fit of Y as a 
function of T N  for 4.0 K > T > 2.85 K yields the parameters listed in table 7. Graphs of 
these fits are presented in figure 6, where the scales along the x and y axes are different 
for each sample and where data below 2.85 K are included. These graphs are somewhat 
misleading as they appear to indicate that the y intercepts and slopes are well determined. 
However, these graphs are plotted for a fixed value of N, as if it were known exactly, 
whereas the values of all three parameters A,  E and N were determined concurrently, and 
are uncertain within the calculated error limits. The standard deviations listed in table 7 
are correct and unfortunately quite large. For sample AI-I, only six points are available for 
the fit and the value of A is poorly determined. For AI-2, 14 points are available and the 
value of A is reasonably well determined (to within S%), and is in good agreement with 
the theoretical value provided by MacDonald [9]. 

The data below 2.85 K are similar for both samples. To obtain a better appreciation of 
the form and magnitude of this anomaly values represented by equation (12) were multiplied 
by T ,  then subtracted (along with Wep. W, and WO) from values of the measured thermal 
resistivity to give 

W, = W - ( W e p t  Wd + WO + AT+ E T N f ' )  

as shown in figure 7. For both samples the effect increases rapidly from 2.85 K with 
decreasing temperature, reaching a maximum at 2.7 K, and subsequently decreases. The 
magnitude of the rise is almost twice as large for sample AI-1 as for Ai-2. Insufficient data 
are available for a proper analysis of data for AI-2, but the values of W, for the five points 
representing the rise of the data for AI-1 are plotted as a function of In T in figure 8. An 
LMSF of these data to an equation of the form 

(13) 

provided the following values and estimated standard deviations of the coefficients: P = 
(1.82i0.28) x 

W,,, = P - Q l n T  

m K W-'; Q = (1.68?c0.27) x SI units. 
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Figure 6. Graphs of ( W  - W, - Wd - Wo)/T versus T2.991... for AI-1 and Venus Tb.bln-. foi 
AI-2 (the intercepu determine A = W,/T).  
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4. Conclusion and discussion 

The analysis of our data and the R data provides excellent support for the theoretical work 
of MacDonald [9] on electron-electron scattering in Al. A comparison of the relevant 
theoretical and corresponding experimental values is provided in table 8. All experimental 
values are in good agreement with theory with the exception of W,JT for AI-1. In this 
case the estimated standard deviation is sufficiently high as to cast considerable doubt on 
this value. 

Values of LE, p m / T 2  = (a) and p 4 T 5  were obtained to beuer than 1% of the 
theoretical values, although in the latter case the agreement may be fortuitous because the 
uncertainty in the extrapolation to obtain the theoretical value is likely to be considerably 
larger than I%. 

Unfortunately, the available data do not allow a calculation of L, from data obtained 
on a single sample. The two experimentally obtained values of L., were calculated by 
dividing pe./T2 (from R data) and p K / T 2  (from Al-1 data) by W,/T (from A1-2 data). 

'J m K-* (for RAM) to 
4.77 x Q m K-2 (for RAI-4) with no apparent correlation to po or any other parameter. 
(The variation is much larger than expected from the error estimates, which indicate, for 
example, that pee/T2 for RAI-4 has a minimum value of 4.715 x R m K-' while 
for RAI-5 it has a maximum value of 3.71 x R m K-'.) This result is particularly 
surprising for the unannealed sample RAI-9. Kaveh and Wiser [13] showed that p e e / T 2  
is a monotonically increasing function of the relative dislocation density (podlpoi) where 
poi is the electron-impurity component of po and p o d  = po - poi. Although the maximum 
increase for AI is estimated to be about 25% it is clear from figure 4 that the dislocation 
density in RAI-9 is not insubstantial, yet its pce/TZ is one of the smaller values in the list 
and within error estimates considerably smaller than the average. 

Values of p , / T 2  vmy considerably, from 3.55 x 
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It is important to note, as clearly explained by Kaveh and Wiser [6], that in AI both 
pee/TZ and W,JT are functions of temperature. They are reasonably constant only below 
4.2 K but decrease by nearly an order of magnitude from 4.2 K to 42 K. However Le, 
remains approximately constant. 

The value f = pep f T 5  obtained from equation (9) is in good agreement with the value 
o f f  determined by extrapolating the theoretical results of Lawrence and Wilkins [4] below 
3 K. On the other hand, the experimental results suggest that f remains a constant and that 
the T 5  dependence persists up to at least 4.2 K, and therefore disagree with the theoretical 
work [4], which indicates that above 3 K the power to which T is raised decreases toward a 
value of ‘roughly four’ as the temperature is raised toward 10 K. It is surprising to find the 
kP and pd terms combined in the form of equation (9) where the second term is negative for 
po c 1. (This form is similar to equation (7). with T replaced by PO.) As po is decreased 
the magnitude of g log po increases, reducing the value of b. However, a limit to this effect 
must exist. If equation (9) is extrapolated to po -= IO-” C2 m it predicts negative values 
for &an unphysical result!! 

All values in table 8 were obtained by omitting points below 2.85 K and therefore 
are independent of the nature of the extraneous scattering process. However, substantial 
evidence was provided to suggest that the extraneous resistivity is due to magnetic impurity 
scattering (with TK Y 1.6 K), and it is reasonable to suggest that the same impurity 
also produces the observed extraneous thermal resistivity in samples AI-1 and AI-2. In 
a table of characteristic temperatures (table 2) Rossiter [I41 lists only Cr and Mn as known 
impurities producing Kondo scattering in AI. These however are reported to have values 
of TK cx 1200 K and 530 K respectively [15]. In [I51 measurable effects were produced 
with concentrations of 900-1@ ppm Cr and 48CL.5 x I@ ppm Mn. The impurity analyses 
for AI-1 and AI-2 quote concentrations of 5 ppm and 6 ppm of Mn respectively, which on 
the basis of [I51 would result in effects too small to be observed. With the information 
available it is not possible to identify the impurity giving rise to the extraneous resistivities 
in our samples and in the R data. 

The form of the extraneous thermal resistivity detected in AI-l and AI-2 is not well 
determined because too few points are available in the temperature range of interest. The 
LMSF to equation (13) does not provide a sufficiently convincing graph (figure 8) to determine 
that W,,, varies as In T .  However, it is clear from figure I that the general behaviour of 
W, as a function of T is similar in both samples, that a maximum is reached at 2.7 K 
and that a subsequent decrease with decreasing T occurs to an approximately level value 
between 2.65 K and 2.5 K. The level value is about 4 x IO-’ m K W-’ for AI-2 and 
8 x m K W-‘ for AI-1 and the ratio of the peaks is in about the same proportion. It 
is also certain that the functional relation between W, and T is quite different from that 
between pm and T ,  where there is a monotonic increase in pm with decreasing T for all 
samples to the lowest temperatures measured (T N 1.25 9). 

In this paper it is shown that if thermal resistivity data are neglected below 2.85 K, then 
values between 2.85 K and 4 K may be extrapolated to obtain the Sommerfeld value of LO 
to within about I %  for both samples Al-1 and AM. In addition, this procedure allows the 
determination of W,/T for sample AI-2 to within 5% of the theoretical value calculated 
by MacDonald [91. The anomaly detected below 2.85 K in both samples is to some extent 
confirmed by the anomaly that appears in the R data at 2.85 K (figure 10 of [5 ] ) .  

Ribot er a/ [5 ]  proposed the following explanation for this anomaly: ‘If this model is 
correct, then as the temperature is raised above TA (% 2.2 K). p ( T )  should increase less 
rapidly than T5, and the resistivities of the purer samples should fall below those of the 
less pure samples as the purer samples move out of the dirty limit’. This explanation is 
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questionable on two counts. First, it is surprising that all samples would 'move out of the 
dirty limit' over the namow temperature range 2.2-2.85 K when their values of po vary 
substantially. the largest being 160 times the smallest. Second, it is not the power of the 
T5 term that changes as the temperature is increased; rather the coefficients of the TZ and 
T5 terms change according to figure IO of [5] and our analysis. We therefore disagree with 
the claim of Ribot et al regarding the observed temperature dependence above 2.2 K. 

An alternative explanation of the R data is presented in which it is assumed that the 
observed anomalies in the thermal and electrical resistivities below 2.85 K are due to the 
occurrence of an additional electron-scattering process. In this case only data above 2.85 K 
may be used to determine pes. pep and pd. An analysis of our resistivity data and of the R 
data shows that equation (6) provides an excellent fit to all samples above 2.85 K and that 
the TS variation, as a component of this equation, continues to at least 4.2 K for all samples. 
This result is confirmed by the analysis of Ribot er al (figure IO of [5]).  When straight 
lines are drawn through the data above 2.85 K on an enlarged copy of their figure 10, the 
slopes and intercepts provide essentially the same values of a and b as our MLRA fits of 
these data to equation (6). 

In ow interpretation of the R data the average value of a is within I% of the theoretical 
value calculated by MacDonald [9]  and the values of b plotted as a function of po (figure 4) 
allow a separation of the hT5 term into two components. One component is independent of 
PO and may be associated with p,, while the other, pd, represents DMR. The value of pep 
obtained in this manner agrees with the value obtained by extrapolating the results of the 
Lawrence and Wilkins model (which does not take into account DMR) to low temperatures. 

In the interpretation presented the excess resistivity h. (above the values obtained by 
extrapolating equation (6) to temperatures below 2.85 K) is due to an additional scattering 
process. Remarkably, the temperature variation of pm is exactly that which is expected for 
Kondo scattering with TK Y 1.6 K, though insufficient information is available to associate 
this effect with a determined impurity. 

It is, of course, possible that some of the excellent agreement between theory and 
experiment is fortuitous and any one of the results obtained in OUT interpretation of the R 
data may be attributed to coincidence. However, all the results presented, taken together, 
lend a degree of confidence in and justification for our interpretation of the R data. 
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